
Gent d— ev doc

Gent
Author: chaered@gmail.com

Version: 1.6

Date: 2010-03-18

page ― 1 of 8―

mailto:chaered@gmail.com

Gent d— ev doc

Table of Contents
1.Introduction...2

1.1.Acknowledgements...2
2.Project...2
3.Versioning...3
4.Testing...3
5.Open issues...3

5.1.General..3
5.2.Scanner..3
5.3.Export..5
5.4.Coding...5
5.5.Install and ports...5
5.6.Localization...5

6.Implementation...6
6.1.Limitations...6
6.2.Format...6
6.3.Aperture expansion..6
6.4.Picture..6
6.5.3D view...7

7.References...7

1. Introduction
This document contains the development documentation for gent, an open-source program to visualize
PCB (printed circuit-board) designs exported by a CAD application in RS-274X format, also known as
the Gerber extended version of RS-274D.

The current Gent version is 0.1-7.

1.1. Acknowledgements
Thanks to user FlyingElectron at SourceForge for the original idea for doing this project in the first
place, and for all the information and sample cases contributed during the project development.

2. Project
The gent project is being developed by me, as user tinco of SourceForge.net, and hosted under
http:://qtgent.sourceforge.net/. It reuses some of the code developed for the qtamaze project by the
same user.

page ― 2 of 8―

Gent d— ev doc

3. Versioning
The sources at SourceForge are kept under CVS, and (with the exception of binary files) have a
"$Revision" keyword expanded to their individual version. We're not using any branches at this point,
so all file versions should be of the form 1.x.

We keep track of a tripartite overall product version number major.minor-release (e.g "1.2-3"), used to
identify the downloadable binary installations. It is maintained on the last line of two files: VERSION
and RESEQNO. All the places where the version numbers are used are derived from this. To change the
numbers, update those two files, then run gent/tools/upversion.sh, then do "cvs commit".

The uploaded binaries are named e.g. gent-1.2-3.msi, but all releases for a version are also saved under
CVS in ububin and winbin using the same name without the release number, e.g. gent-1.2.msi.
Uploading the web pages is semi-automated through the web/upweb script. Uploading the binaries to
SourceForge is still a manual process.

4. Testing
To use the prototype, install and start it. Then use File>New to clear the canvas, File>Open to read and
overlay some Gerber files on the canvas, and File>Export to store the result in a PNG.

To test the single-step view mode on a file xxx.cmp, try the following command:
gent.exe -do-view -active -load xxx.cmp

then hit Ctrl-B (=single step) lots of times. The single-step mode has some rough edges being worked
on.

5. Open issues
Open issues, which can be either bugs or feature requests, are sometimes also tracked in tickets in the
qtamaze tracker system of SourceForge, as lines in the gent(1) man-page, in the TODO list in CVS, on
the Wiki page https://sourceforge.net/apps/mediawiki/qtgent/index.php?title=To_do, and in “XXX”
marked comments in the sources. This document is for a more detailed or comprehensive look at open
issues.

5.1. General
The projects is still in the planning phase, the current code is just a prototype to test the RS-274X
scanner. The menus, GUI lay-out, internal control flow etc. are not anywhere near usable.

5.2. Scanner
The most evolved part is the RS-274X scanner, class GerberScan. This takes a text file (stored
internally as a GerberData object), and parses it to produce an image by calls to a given QPainter. The
data object is designed so we can easily create a subview (used now to expand aperture macros, maybe

page ― 3 of 8―

Gent d— ev doc

later for include files), and error methods have hooks so we could tie them into a text widget for
highlighting an error fragment.

Ok Cmd Function Remarks
* AS axis select We currently ignore the A/B mapping.
* FS format statement
* MI mirror image
* MO mode of units
* OF offset
* SF scale factor
- IJ image justify
* IN image name
* IO image offset
* IP image polarity
- IR image rotation
* PF plotter film Scanned but ignored.
*/- AD aperture description Unimplemented operator '='. Not tested

with multi-part macros.
* AM aperture macro
- KO knockout
* LN layer name
* LP layer polarity
* SR step and repeat
- IF include file Need to add an included-from reference in

GerberScan so we can report context of
location in error message.

* N sequence number Parsed but ignored.
*/- G general Unimplemented: G00 and G45.
* D plot Exposure flags are ignored.
* M miscellaneous

 Some open scanner issues:

1. We don't support some commands at all yet, see table above.

2. We do properly scan some information, such as A/B mapping and exposure flags, and correctly

page ― 4 of 8―

Gent d— ev doc

update the state information in struct state_t, but then ignore this state when actually drawing
the picture.

3. The mapping of shape descriptions in GerberScan::expand(...) to AperPart objects is very
partial, we only handle a few of the cases.

4. The GerberScan::flash(...) method, tasked with painting the aperture shapes onto a canvas, now
only interprets a small subset of valid AperPart shapes, specifically non-rotated ovals and
rectangles (both only without holes).and some polygons.

5.3. Export
1. We only offer export to PNG and GIF.

2. There is no way to adjust the scale, x/y flip, colors, image quality, etc.

3. In short, it's barely good enough for testing the scanner, let alone for actual use.

4. Not started on the real goal yet, which is 3D visual export. No clue even where to find the part
lists etc. in a description.

5.4. Coding
So many holes... see the Wiki "To do" page.

The scanner stepper (classes GerberView and GerberState) is a construction zone right now, and not
very useful yet. Need more work to figure out how to tie together the scanner, error traces, text field
editing, location references, and the view actions. The state view GUI is also incomplete (current X-Y-
I-J, etc.).

Note: When generating the MSI using WiX on WinXP, we get warnings like this:
gent.wxs(50) : warning LGHT1076 : ICE60: The file QtCoreDLL is not a Font,
and its version is not a companion file reference. It should have a language
specified in the Language column.

This is due to the Qt DLLs lacking a "language" property, not a problem in the build scripts. It may get
fixed in some future Qt version.

5.5. Install and ports
WinXP MSI and Ubuntu/Debian package available now. Borrowed most of the logic for that from
qtamaze.

5.6. Localization
Not localized yet, but most of the user-visible strings are inside a "tr(...)" call already.

page ― 5 of 8―

Gent d— ev doc

6. Implementation
Some notes on the current design and implementation.

6.1. Limitations
We only draw lines with the D01 command if the aperture is defined as a non-holed circle. We may
extend this with support for using an octagonal aperture as well. According to FE, that is pretty much
the standard.

We don't cover all AM shapes. Specifically: no outline, moire, or thermal.

We don't cover all AD shapes. Specifically, we don't draw any shapes with holes.

We currently ignore AB-XY mapping, mirroring, and some other state settings when doing actual
drawing.

6.2. Format
The input format is RS-274X, with two additions:

1. Lines starting with "#" (number sign) are skipped. They can't occur inside a data block, they are
lexically treated like commands.

2. Lines starting with ":" (colon) are internal debugging switches. The set of commands and their
syntax and semantics are constantly changing, it is just meant for internal development and
testing. See Wiki page "Debug command" on
https://sourceforge.net/apps/mediawiki/qtgent/index.php?title=Debug_command.

6.3. Aperture expansion
In principle we could do the interpretation of the aperture macro definition strings in one of three
places: when we encounter the AM command, when we expand it in the AD command, and finally
when we do the D command for the aperture reference. The first may be fastest, since we would not
have to reinterpret the digits each time, but it would mean designing an intermediate expression tree to
hold the operators and $-references. The last is slowest since it would mean deferring the expansion to
repeat in every D reference. Doing it in AD seems the best compromise, also since it can ultimately
define a single object shape for each aperture, and translate each D command to a linked instance of
that shape. See classes Aperture and AperPart.

6.4. Picture
The drawing strategy is now as follows:

1. The scanner and the picture canvas point to a single QPicture object. The main Gent object
initializes a painter on it.

2. The main(...) function reads a series of files, before entering the main event loop. Each file is
read as a GerberData block, then passed to GerberScan for interpretation.

page ― 6 of 8―

Gent d— ev doc

3. The scanner implements "D" commands by calling GerberScan::flash(...) (except for plain
D01/D02 line commands), which draws shapes using the single painter.

4. The main loop calls end() on the painter, so the QPicture object is complete.

5. In Canvas, the overridden paintEvent(...) gets the picture's boundary information, and draws the
(scaled, flipped, translated) picture onto the visible area after clearing the background.

6. The File>Export action uses the same QPicture, but paints it onto a QImage and then uses a
QImageWriter to write it out to a file.

Update:
The first version had a single Canvas object, a single QPicture that the GerberScan would draw on,
and when the canvas needed repainting it would draw the QPicture to the canvas. The problem was that
this made it impossible to draw in between, or add a second scan, because a new painter begin() wipes
a QPicture clean.

The second version used a PicSet class to encapsulate a series of QPicture instances, so painting could
be done in increments. The Canvas class changed to paint from a PicSet instead. The problem was that
there was no way to separate the drawing of the PCB layers, and all colors were hard-coded in the
GerberScan class itself.

The third version prepped for multi-layer handling by wrapping the PicSet in a new Plane class to
represent a board layer attributed with a color, name, layer type, and visibility toggle. Canvas was
changed to indirect via the Plane instance. This still stuck to a single layer though.

The fourth version added class Deck to hold a series of Plane (PCB layer) objects, holding common
attributes like scale and overall background color, and a companion GUI class DeckView providing a
control panel for the layer stack. Canvas was changed again, to paint all visible planes in the deck.

Currently, I'm working on GUI actions to make GerberScan use the right plane in the deck, and change
color composition of the picture.

Note: I wasted way too much time on DeckView, which is a relatively minor panel and of probably
little interest to most user, due to running into memory management and interface issues when trying to
use QGridLayout to represent a dynamically changing table. In retrospect, and if not trying to use this
as a learning experience with Qt, I would and should have ditched the whole attempt earlier on and
switched to a hardwired, pre-allocated or static, fixed-size matrix and grid.

6.5. 3D view
The 3D view port below the 2D canvas area is very experimental now. It uses the Qt4 OpenGL library.
It tends to crash, colors are off, commands are undocumented, no visible controls, etc. No backdrop
yet. Early stages.

7. References
For standard references:

1. http://en.wikipedia.org/wiki/G-code

page ― 7 of 8―

http://en.wikipedia.org/wiki/G-code

Gent d— ev doc

2. http://www.linuxcnc.org/handbook/gcode/g-code.html

For component package dimensions:

1. http://www.panasonic.com/industrial/components/pdf/AOA0000CE1.pdf

2. http://www.digikey.com/

3. http://www.fairchildsemi.com/products/discrete/pdf/soic8_dim.pdf

page ― 8 of 8―

http://www.fairchildsemi.com/products/discrete/pdf/soic8_dim.pdf
http://www.digikey.com/
http://www.panasonic.com/industrial/components/pdf/AOA0000CE1.pdf
http://www.linuxcnc.org/handbook/gcode/g-code.html

